

SYLLABUS

Date/ Revision	7 January 2016
Faculty	Engineering
Approval	

SUBJECT : THERMO FLUID SCIENCE 2

1. Identification of Subject:

Name of Subject	:Thermo Fluid Science 2
Code of Subject	: THFL-2120
SKS / ECTS	:2/
Semester	:4
Study Program	:B-AVE
Lecturer	:Neno Ruseno, S.T., M.Sc.

2. Competency

After having the course, students are expected to:

- a) Understand concepts and definitions of irreversibility and availability.
- b) Understand about power and refrigerator systems.
- c) Describe about gas mixture.
- d) Understand about thermodynamic relations.
- e) Understand about chemical reactions.
- f) Introduce to phase and chemical equilibrium.
- g) Understand about compressibility flow.

3. Description of Subject:

This course provides an abbreviated version of standard thermodynamics, fluid mechanics, and heat transfer, covering topics that engineering students are most likely to need in their professional lives. Students in a combined thermal-fluids course can gain a basic understanding of energy and energy interactions, various mechanisms of heat transfer, and fundamentals of fluid flow.

4. Learning Approach

: Combination of Expository - inquiry and colaborative
: Discussion, question answer, sample problem, group work
: Home work, group report, group presentation
: LCD projector, slide.

5. Evaluation

a)	Absence maximum	: 25%
b)	Participation in discussion	: 5 points
c)	Homework, Classwork	: 5 points
d)	Presentation, Simulation	: 10 points
e)	Daily Quiz	: 20 points
f)	Final Examination	: 60 pointa

Total

.....

: 100 points

6. Contents/ Topics of Lecturing:

Week	Content/ Topics of Lecturing	Text Book Chapter	Remark
1	Introduction and Properties of Fluids:	Ch10[1]	
	The No-Slip Condition; Classification of Fluid Flows; Vapor		
	Pressure and Cavitation; Viscosity; Surface Tension and		
	Capillary Effect;		
2	Fluid Statics:	Ch11[1]	
	Introduction to Fluid Statics; Hydrostatic Forces on Submerged		
	Plane Surfaces; Hydrostatic Forces on Submerged		
	Curved Surfaces; Buoyancy and Stability.		
3	Bernoulli and Energy Equations:	Ch12[1]	
	The Bernoulli Equation; General Energy Equation; Energy		
	Analysis of Steady Flows.		
4	Momentum Analysis of Flow Systems:	Ch13[1]	
	Newton's Laws; Choosing a Control Volume; Forces Acting on a		
	Control Volume; The Reynolds Transport Theorem; The Linear		
	Momentum Equation.		
5	Internal Flow:	Ch14[1]	
	Introduction; Laminar and Turbulent Flows; The Entrance		
	Region; Laminar Flow in Pipes; Turbulent Flow in Pipes; Minor		
	Losses; Piping Networks and Pump Selection.		
6	External Flow: Drag and Lift:	Ch15[1]	
	Introduction; Drag and Lift; Friction and Pressure Drag; Drag		
	Coefficients of Common Geometries; Parallel Flow Over Flat		
	Plates; Flow Over Cylinders and Spheres; Lift.		
7	Mechanisms of Heat Transfer:	Ch16[1]	
	Introduction; Conduction; Convection; Radiation; Simultaneous		
	Heat Transfer Mechanisms.		
8	Steady Heat Conduction:	Ch17[1]	
	Steady Heat Conduction in Plane Walls; Thermal Contact		
	Resistance; Generalized Thermal Resistance Networks; Heat		
	Conduction in Cylinders and Spheres; Critical Radius of		
	Insulation; Heat Transfer From Finned Surfaces.		
9	Transient Heat Conduction:	Ch18[1]	
	Lumped System Analysis; Transient Heat Conduction in Large		

File:THFL-2120 Thermo Fluid Science 2.docx

	Plane Walls, Long Cylinders, and Spheres with Spatial Effects;		
	Transient Heat Conduction in Semi-Infinite Solids; Transient		
	Heat Conduction in Multidimensional Systems.		
10	Forced Convection:	Ch19[1]	
	Physical Mechanism of Convection; Thermal Boundary Layer;		
	Parallel Flow Over Flat Plates; Flow Across Cylinders and		
	Spheres; General Considerations for Pipe Flow; General		
	Thermal Analysis; Laminar Flow in Tubes; Turbulent Flow in		
	Tubes.		
11	Natural Convection:	Ch20[1]	
	Physical Mechanism of Natural Convection; Equation of		
	Motion and the Grashof Number; Natural Convection Over		
	Surfaces; Natural Convection Inside Enclosures.		
12	Radiation Heat Transfer:	Ch21[1]	
	Introduction; Thermal Radiation; Blackbody Radiation;		
	Radiative Properties; The View Factor; Radiation Heat		
	Transfer: Black Surfaces; Radiation Heat Transfer: Diffuse,		
	Gray Surfaces.		
13	Heat Exchangers:	Ch22[1]	
	Types of Heat Exchangers; The Overall Heat Transfer		
	Coefficient; Analysis of Heat Exchangers; The Log Mean		
	Temperature Difference Method; The Effectiveness-NTU		
	Method.		
14	Rehearsal and Tutorial:		
	Rehearsal of all subject and students can ask for more detail.		
15	Final Examination		

7. Book Reference:

- a) Main Text Book: [1] "Fundamentals of Thermal Fluid Sciences (SI Units), 4th Edition, 2012", Authors: Yunus Cengel, Robert Turner, John Cimbala, Publisher: Mc-GrawHill.
- b) Supplement Textbooks:

QT 06.02/Rev.00