

SYLLABUS

Date/ Revision	7 January 2016 Engineering		
Faculty			
Approval			

SUBJECT : THERMO FLUID SCIENCE 1

1. Identification of Subject:

Name of Subject	:Thermo Fluid Science 1
Code of Subject	: THFL-2110
SKS / ECTS	:2/
Semester	:3
Study Program	:B-AVE
Lecturer	:Neno Ruseno, S.T., M.Sc.

2. Competency

After having the course, students are expected to:

- a) Understand concepts and definitions of thermodynamics.
- b) Identify properties of a pure substance.
- c) Understand about work and heat.
- d) Describe about the first law of thermodynamics.
- e) Understand about first law analysis for a control volume.
- f) Understand about material removal processes.
- g) Describe the second law of thermodynamics.
- h) Understand about entropy.
- i) Understand about second law analysis for a control volume.

3. Description of Subject:

This course provides an abbreviated version of standard thermodynamics, fluid mechanics, and heat transfer, covering topics that engineering students are most likely to need in their professional lives. Students in a combined thermal-fluids course can gain a basic understanding of energy and energy interactions, various mechanisms of heat transfer, and fundamentals of fluid flow.

1/3

4. Learning Approach

Approach	: Combination of Expository - inquiry and colaborative
Method	: Discussion, question answer, sample problem, group work
Student Task	: Home work, group report, group presentation
Media	: LCD projector, slide.

5. Evaluation

- : 25% a) Absence maximum b) Participation in discussion : 5 points
- c) Homework, Classwork : 5 points
- d) Presentation, Simulation : 10 points
- e) Daily Quiz : 20 points
- f) Final Examination : 60 pointa

Total

: 100 points

6. Contents/ Topics of Lecturing:

Week	Content/ Topics of Lecturing	Text Book Chapter	Remark
1	Introduction and Overview:	Ch1 [1]	
	Introduction to Thermal-Fluid Sciences; Thermodynamics; Heat		
	Transfer; Fluid Mechanics; Importance of Dimensions and Units;		
	Problem-Solving Technique.		
2	Basic Concepts of Thermodynamics:	Ch2[1]	
	Systems and Control Volumes; Properties of a System; Density		
	and Specific Gravity; State and Equilibrium; Processes and Cycles;		
	Temperature and the Zeroth Law of Thermodynamics; Pressure;		
	The Manometer; The Barometer and Atmospheric Pressure.		
3	Energy, Energy Transfer, and General Energy Analysis:	Ch3[1]	
	Introduction; Forms of Energy; Energy Transfer by Heat; Energy		
	Transfer by Work; Mechanical Forms of Work; The First Law of		
	Thermodynamics; Energy Conversion Efficiencies.		
4	Properties of Pure Substances:	Ch4[1]	
	Pure Substance; Phases of a Pure Substance; Phase-Change		
	Processes of Pure Substances; Property Diagrams for Phase-		
	Change Processes; Property Tables; The Ideal-Gas Equation of		
	State; Compressibility Factor—A Measure of Deviation From		
	Ideal-Gas Behavior.		
5	Energy Analysis of Closed Systems:	Ch5[1]	
	Moving Boundary Work; Energy Balance for Closed Systems;		
	Specific Heats; Internal Energy, Enthalpy, and Specific Heats of		
	Ideal Gases; Internal Energy, Enthalpy, and Specific Heats of		
	Solids and Liquids.		
6	Mass and Energy Analysis of Control Volumes:	Ch6[1]	
	Conservation of Mass; Flow Work and the Energy of a Flowing		
-2110 Tł	nermo Fluid Science 1 2/3		QT 00

r			
	Fluid; Energy Analysis of Steady-Flow Systems; Some Steady-Flow		
	Engineering Devices; Energy Analysis of Unsteady-Flow		
	Processes.		
7,8	The Second Law of Thermodynamics:	Ch7[1]	
	Introduction to the Second Law; Thermal Energy Reservoirs; Heat		
	Engines; Refrigerators and Heat Pumps; Reversible and		
	Irreversible Processes; The Carnot Cycle; The Carnot Principles;		
	The Thermodynamic Temperature Scale; The Carnot Heat Engine;		
	The Carnot Refrigerator and Heat Pump.		
9,10	Entropy:	Ch8[1]	
	Entropy; The Increase of Entropy Principle; Entropy Change of		
	Pure Substances; Isentropic Processes; Property Diagrams		
	Involving Entropy; What is Entropy?; The T ds Relations; Entropy		
	Change of Liquids and Solids; The Entropy Change of Ideal Gases;		
	Reversible Steady-Flow Work; Isentropic Efficiencies of Steady-		
	Flow Devices; Entropy Balance.		
11-13	Power and Refrigeration Cycles:	Ch9[1]	
	Basic Considerations in The Analysis of Power Cycles; The Carnot		
	Cycle and its Value in Engineering; Air-Standard Assumptions; An		
	Overview of Reciprocating Engines; Otto Cycle: The Ideal Cycle for		
	Spark-Ignition Engines; Diesel Cycle: The Ideal Cycle for		
	Compression-Ignition Engines; Brayton Cycle: The Ideal Cycle for		
	Gas-Turbine Engines; The Brayton Cycle with Regeneration; The		
	Carnot Vapor Cycle; Rankine Cycle: The Ideal Cycle for Vapor		
	Power Cycles; Deviation of Actual Vapor Power		
	Cycles from Idealized Ones; How Can We Increase The Efficiency		
	of The Rankine Cycle?; The Ideal Reheat Rankine Cycle;		
	Refrigerators and Heat Pumps; The Reversed Carnot Cycle; The		
	Ideal Vanar Compression Pofrigaration Cycles Actual Vanar		
	ideal vapor-compression kemgeration Cycle, Actual vapor-		
	Compression Refrigeration Cycle.		
14	Compression Refrigeration Cycle. Rehearsal and Tutorial:		
14	Compression Refrigeration Cycle, Actual Vapor- Compression Refrigeration Cycle. Rehearsal and Tutorial: Rehearsal of all subject and students can ask for more detail.		

7. Book Reference:

- a) Main Text Book: [1] "Fundamentals of Thermal Fluid Sciences (SI Units), 4th Edition, 2012", Authors: Yunus Cengel, Robert Turner, John Cimbala, Publisher: Mc-GrawHill.
- b) Supplement Textbooks:

3/3

QT 06.02/Rev.03 IULI – Eco Campus, The Breeze Jl. BSD Grand Boulevard BSD City 15345 Island of Java