

SYLLABUS

Date/ Revision	: 26 January 2017
Faculty	: Engineering
Approval	: Dean Faculty of Engineering

SUBJECT : SIGNALS AND SYSTEMS

1. Identification of Subject:

Name of Subject	: Signals and Systems
Code of Subject	: SSYS-2100
SKS / ECTS	: 3
Semester	: 4
Study Program	: Mechatronics Engineering
Lecturer	: Dr. rer.nat. Ponky Ivo, S.Si, M.Sc

2. Competency

After having the course, students are expected to:

- a) Have ability in parallel the methods of analysis for continuous-time and discrete-time signals and systems
- b) Have equal familiarity with techniques suitable for analyzing and synthesizing both continuoustime and discrete-time systems
- c) Develop insight and intuition the similarities and differences between continuous-time and discrete-time systems
- d) Understand the concept of frequency-domain analysis of signals and systems using Fourier analysis and the basic applications of filtering, sampling, communications, and feedback system

3. Description of Subject:

The concepts of signals and systems arise in a wide area of science and technology of communications, aeronautics, circuit design, acoustics, seismology, biomedical engineering, energy generation and distributions system, chemical process control and speech processing. The technology development and algorithms of this subject grow rapidly. This course is an introduction to the basic concepts and theory of analog and digital signal processing. Students need to have a basic background of calculus as well as some experience in manipulating complex numbers and some exposure to differential equations. Prior exposure to the fundamentals of circuits for electrical engineers is helpful.

4. Learning Approach

Approach	: Combination of Expository - inquiry and colaborative
Method	: Discussion, question answer, sample problem
Student Task	: Home work, presentation
Media	: LCD projector, slides

5. Evaluation

a)	Absence maximum	: 25%
b)	Participation in discussion	: 5 points
c)	Homework/Classwork	: 5 points
d)	Quiz	: 30 points
e)	Final Examination	: 60 points

Total : 100 points

6. Contents/ Topics of Lecturing:

Week	Content/ Topics of Lecturing	Text Book Chapter	Remark
1	Signals and Systems Introduction, Continuous-Time and Discrete-Time Signals, Transformations of the Independent Variable, Exponential and Sinusoidal Signals, The Unit Impulse and Unit Step Functions, Continuous-Time and Discrete-Time Systems, Basic System Properties	Ch1[1], 1[2]	
2	Linear Time-Invariant (LTI) Systems Discrete-Time LTI Systems (The Convolution Sum), Continuous -Time LTI Systems (The Convolution Integral), Properties of Linear Time-Invariant Systems, Casual LTI Systems Described by Differential Equations	Ch2[1], 13[2]	
3-4	Fourier Series Representation of Periodic Signals The Response of LTI Systems to Complex Exponentials, Fourier Series Representation of Continuous-Time Periodic Signals, Convergence of the Fourier Series, Properties of Continuous-Time Fourier Series, Fourier Series Representation of Discrete-Time Periodic Signals, Properties of Discrete-Time Fourier Series, Fourier Series and LTI Systems, Filtering, Examples of Continuous- Time and Discrete-Time Filters described by Difference Equations	Ch3[1], 7[2]	Q1
5	The Continuous-Time Fourier Transform Representation of Aperiodic Signals: The Continuous-Time Fourier Transform, The Fourier Transform for Periodic Signals, Properties of the Continuous-Time Fourier Transform, The Convolution Property, The Multiplication Property	Ch4[1]	Q2
6	The Discrete-Time Fourier Transform Representation of Aperiodic Signals: The Discrete-Time Fourier Transform, The Fourier Transform for Periodic Signals, Properties of the Discrete-Time Fourier Transform, The Convolution Property, The Multiplication Property, Duality	Ch5 [1]	
7	Time and Frequency Characterization of Signals and Systems The Magnitude-Phase Representation of the Fourier Transform, The Magnitude-Phase Representation of the Frequency Response of LTI Systems, Time-Domain Properties of Ideal Frequency- Selective Filters, Time-Domain and Frequency-Domain Aspects of	Ch6[1]	Q3

2/4

	Nonideal Filters, First-Order and Second-Order Continuous-Time		
	Systems, First-Order and Second-Order Discrete-Time Systems,		
	Examples of Time- and Frequency-Domain Analysis of Systems		
8	Semester Break		
9	Sampling	Ch7[1]	
	Representation of a Continuous-Time Signal by its Samples: The		
	Sampling Theorem, Reconstruction of a Signal from Its Samples		
	Using Interpolation, The Effect of Undersampling: Aliasing,		
	Discrete-Time Processing of Continuous-Time Signals, Sampling of		
	Discrete-Time Signals		
10	Communication Systems	Ch8[1]	
	Complex Exponential and Sinusoidal Amplitude Modulation,		
	Demodulation for Sinusoidal AM, Frequency-Division		
	Multiplexing, Single-Sideband Sinusoidal Amplitude Modulation,		
	Amplitude Modulation with a Pulse-Train Carrier, Pulse-Amplitude		
	Modulation, Sinusoidal Frequency Modulation, Discrete-Time		
	Modulation		
11-12	The Laplace Transform	Ch9[1], 6[2]	Q4
	The region of Convergence for Laplace Transforms, The Inverse		
	Laplace Transform, Geometric Evaluation of the Fourier Transform		
	from the Pole-Zero Plot, Properties of the Laplace Transform, Some Laplace Transform Pairs, Analysis and Characterization of		
	LTI Systems Using the Laplace Transform, System Function Algebra		
	and Block Diagram Representations, The Unilateral Laplace		
	Transform		
13	The Z-Transform	Ch10[1],	
10	Introduction of The Z-Transform, The Region of Convergence for	15[2]	
	the Z-Transform, The Inverse Z-Transform, Geometric Evaluation		
	of the Fourier Transform from the Pole-Zero Plot, Properties of		
	the Z-Transform, Some Common Z-Transform Pairs, Analysis and		
	Characterization of LTI Systems Using Z-Transforms, System		
	Function Algebra and Block Diagram Representations, The		
	Unilateral Z-Transform		
14	Linear Feedback Systems	Ch11[1]	Q5
	Introduction to Linear Feedback Systems, Some Applications and		
	Consequences of Feedback, Root-Locus Analysis of Linear		
	Feedback Systems, The Nyquist Stability Criterion		
15	Rehearsal and Tutorial:		
	Rehearsal of all topics and students can ask for more detail		
16	Silent Week: make-up classes only		
17	Final Exam		

7. Book Reference:

- a) Main Text Book: [1] "Signals and Systems, 2nd Edition, 1998", Authors: Alan V. Oppenheim, Publisher: Prentice-Hall International.
- **b)** Supplement Textbooks: [2] "Signals and Systems, 1st Edition, 2014", Authors: Mahmood Nahvi, Publisher: McGraw Hill.

Note: Subjects to change.