

SYLLABUS

Date/ Revision	September 28, 2016	
Faculty	Engineering	
Approval	Dean Faculty of Engineering	

SUBJECT : STATISTICS & PROBABILITY

1 Identification of Subject:

:	Statistics & Probability
:	MATH -2500
:	2/3
:	4
:	B-AVE/B-ELE/B-INE/B-MEE/B-MTE
:	• To be appointed
	: : :

2 Competency (Learning Outcome)

- At the end of the course students will have an overview of the most important methodological approaches and concepts of statistics for engineering applications.
- After completing the course, students will be able to describe the core aspects of engineering statistics and able to illustrate, contrast, and apply the main concepts and theories of statistics
- Through the successful participation in this course students are able to recognize and to implement statistics into their daily engineering activities, especially for analysis objectives
- Through this course, students are able to use necessary software statistics tools/applications.

3 Description of Subject:

This course is providing students with mathematical and software tools for data analysis. The theory of statistics and its implementation to engineering and scientific field are introduced and explored. Software application using R language is used to provide a handson experience for implementing theory into data analaysis. Practical sessions using R language are provided, and small project is introduced to test student capabilities.

4 Learning Approach

Approach	:	Combination of Expository - inquiry and colaborative
Method	:	Discussions, Questions/answers, Video, Sample problems/cases, Group
		works, Software exercises
Student Task	:	Home work, Presentation
Media	:	LCD projector

5 Evaluation

File:MATH-2500-STATISTICS-PROBABILITY.docx

QT 06.02/Rev.01

Maximum absences		:	25%
Paper (Personal)		:	20 points
Presentation (Group)		:	20 points
Quizzes (Personal)		:	20 points
Final Examination		:	40 points
	Total	:	100 points

1. Contents/ Topics of Lecturing:

Week	Topics	Content	Remark
1	Probability theory	 Probability Events, Combination of Events Conditional Probability Probabilities of events intersections Posterior probability Counting techniques Case Study : micro- electronics solder joints, workpiece machining accuracy R application: Introduction to R language (software tool) 	Chapter 1[a] Chapter 1-2[b]
2	Random Variables	 Discrete Random Variables Continuous Random Variables The Expectation of a Random Variables The Variance of a Random Variables Jointly Distributed Random Variables Jointly Distributed Random Variables Combination and Functions of Random Variables Case Study: Microelectronics solder joints, Workpiece Machining Accuracy R application: Preparing & Manipulating Your Data 	Chapter 2 [a] Chapter 3 [b]

QT 06.02/Rev.01

INTERNATIONAL UNIVERSITY LIAISON INDONESIA

	INDONESIA 🔶 I				
Week	Topics	Content	Remark		
3	Discrete Probability & Distributions	 The Binomial Distribution The Geometric and Negative Binomial Distributions The Hypergeometric Distribution The Poison Distributions The Multinomial Distribution Case Study : Microelectronics solder joints, Workpiece Machining Accuracy R application: Combining and Structuring Datasets 	Chapter 3 [a] Chapter 4 [b]		
4	Continuous Probability Distributions	 The Uniform Distribution The Exponential Distribution The Gamma Distribution The Weibull Distribution The Beta Distribution Case Study : Microelectronics solder joints, Geometric Accuracy of Prismatic Machined Parts R application: Summary Statistics for Continuous Variables, Tabular Data 	Chapter 4 [a] Chapter 5,6 [b]		
5	Exercises with R language	 R application: Probability Distribution, Creating Plots, Customizing Plots 	Chapter 7,8,9 [b]		
6	The Normal Distribution	 Probability Calculation Using the Normal Distribution Linear Combinations of Normal Random 	Chapter 5 [a]		

UNIVERSITY **LIAISON INDONESIA**

Week	Topics	Content	Remark		
7	Exercises with R language	 Variables Approximating Distributions with the Normal Distribution Distributions Related to Normal Distribution Hypothesis Testing Regression and General Linear Models 	Chapter 10, 11 [b]		
8	Semester Break	•			
9	Descriptive Statistics	 Experimentation Data Presentation Case Study : Microelectronics, Quality Control of Workpiece Geometric 	Chapter 6 [a] Analysis data using R language (practical-1)		
10	Statistical Estimation and Sampling Distribution	 Point Estimates Properties of Point Estimates Sampling Distributions Constructing Parameter Estimates 	Chapter 7 [a] Analysis data using R language (practical-2)		
11	Interference on Population Mean, and Comparing of Two Population Mean	 Confidence Interval Hypothesis Testing Analysis of Paired Samples Analysis of Independent Samples Case Study : Microelectronics Solder Joints Case Study : Machine Tool Ball Bearing Geometric Quality Control 	Chapter 8, 9 [a] Analysis data using R language (practical-3) Alternatively, students may also bring their case studies and present the analysis using R		
12	Discrete Data Analysis	 Inferences on a Population Proportion Comparing Two Population Proportions Goodness of Fit Tests for One-Way Contigency Tables Testing for Independence in Two- 	Chapter 10 [a] R language practical-4		

QT 06.02/Rev.01

INTERNATIONAL UNIVERSITY LIAISON INDONESIA

Week	Topics	Content	Remark	
13	The Analysis of Variance, Simple Linear Regression and Correlation	 Way Contigency Tables One-Factor Analysis of Variance Randomized Block Designs The Simple Linear Regression Model Fitting the Regression Line Inferences on the Slope Parameter Inferences on The Regression Line Prediction Interval for Future Response Values The Analysis of Variance Table Residual Analysis Variable Transformations Correlation Analysis 	Chapter 11, 12 [a] Analysis data using R language (practical-5)	
14	Multiple Linear Regression & Non Linear Regression, Multifactor Experimental Design & Analysis, Non- Parametric Statistical Analysis	 Introduction to multiple linear regression Examples of multiple linear regression Matrix Algebra Formulation of Multiple Linear Regression Evaluating Model Accuracy Non-Linear Regression Experiment with Two Factors Experiment with Three- More Factors The Analysis of a Single Population Comparing Two Populations 	Chapter 13,14,15 [a] Alternatively, students may also bring their case studies and present the analysis using R	
15	Quality Control Method, Reliability Analysis and Life Testing	 Statistical Process Control Variable Control Charts Attribute Control Charts Acceptance Sampling 	Chapter 16, 17 [a] Project Presentations	

File:MATH-2500-STATISTICS-PROBABILITY.docx

Week	Topics	Content	Remark
Week		 System Reliability Modeling Failure Rates Life Testing Small Project : Geometric Measurement of Simple/Complex Machining Parts/Components Small Project : Maintenance 	
		Management Systems Data Analysis	
16	Silent Week: make-up classe	s only	
17	Final Examination		

Reference:

Main Reference:

- *a)* Hayter, Anthony, *Probability and Statistics for Engineers and Scientists,* 4th edition, Cengage Learning, 2013
- b) Stowell, Sarah, Using R for Statistics, Apress, 2013