

SYLLABUS

Date/ Revision22 June 2016FacultyEngineering

Approval

SUBJECT : KINEMATICS AND DYNAMICS

1. Identification of Subject:

Name of Subject	:Kinematics and Dynamics
Code of Subject	:KINE-2100
SKS / ECTS	:3/
Semester	:4
Study Program	:B-AVE
Lecturer	:Neno Ruseno, S.T., M.Sc.

2. Competency

After having the course, students are expected to:

- a) Recognize examples of mechanical systems in which the application of the principles discussed in this course is necessary to complete their design
- b) Select or design a mechanism for a specific purpose
- c) Analyze the position, velocity and acceleration of a linkage using graphical, analytical and computer-based methods
- d) Design and analyze cams and gear trains
- e) Analyze shaking forces and moments of a machine
- f) Balance a rotating machine to eliminate shaking forces and moments
- g) Compare and contrast the use of hand calculations, computer simulation, and experiments in designing and analyzing machines

3. Description of Subject:

Displacement, velocity and acceleration analysis of linkage mechanisms; inertia force analysis of mechanisms; balancing of reciprocating and rotating masses; free and harmonic vibrations of single degree of freedom systems.

QT 06.02/Rev.00

4. Learning Approach

Approach	: Combination of Expository - inquiry and colaborative
Method	: Discussion, question answer, sample problem, group work
Student Task	: Home work, group report, group presentation
Media	: LCD projector, slide.

: 100 points

5. Evaluation

a)	Absence maximum	: 25%
b)	Participation in discussion	: 5 points
c)	Homework, Classwork	: 5 points
d)	Presentation, Simulation	: 10 points
e)	Daily Quiz	: 20 points
f)	Final Examination	: 60 pointa

Total

6. Contents/ Topics of Lecturing:

Week	Content/ Topics of Lecturing	Text Book	Remark
		Chapter	
1	Introduction: Historical Perspective Kinematics Design Analysis and Synthesis Mechanisms Planar Linkages Visualization Constraint Analysis Idle Degree of Freedom Over-constrained Linkages Uses of the Mobility Criterion Inversion Reference Frames Motion Limits Compler-Driven Linkages	Ch1[1]	
	 Motion Limits for Slider-Crank Mechanisms Interferences 		
2	 Technique in Geometric Constraint Programming; Planar Linkage Design: Geometric Constraint Programming (GCP) Constraints and Program Structure Initial Setup for a GCP Session 	Ch2,3[1]	

		1	
	Drawing a Basic Linkage Using GCP		
	Troubleshooting Graphical Programs Developed Using GCP		
	 Two-Position Double-Rocker Design 		
	Synthetic of Crank-Rocker Linkages for Specified Rocker		
	Amplitude		
	Motion Generation		
	Path Synthesis		
3	Graphical Position, Velocity, and Acceleration Analysis for	Ch4[1]	
	Mechanisms with Revolute Joints or Fixed Slides:		
	Graphical Position Analysis		
	Planar Velocity Polygons		
	Graphical Acceleration Analysis		
	 Graphical Analysis of a Four-Bar Mechanism 		
	 Graphical Analysis of a Slider-Crank Mechanism 		
	Velocity Image Theorem		
	Acceleration Image Theorem		
	Solution by Geometric Constraint Programming		
4	Linkages with Rolling and Sliding Contacts and Joints on Moving	Ch5[1]	
	Sliders:		
	Reference Frames		
	General Velocity and Acceleration Equations		
	• Special Cases for the Velocity and Acceleration Equations		
	Linkages with Rotating Sliding Joints		
	Rolling Contact		
	Cam Contact		
	General Coincident Points		
	Solution by Geometric Constraint Programming		
5	Instant Centers of Velocity:	Ch6[1]	
	Definition		
	Existence Proof		
	Location of an Instant Center from the Directions of Two		
	Velocities		
	Instant Center at a Revolute Joint		
	Instant Center of a Curved Slider		
	Instant Center of a Prismatic Joint		
	Instant Center of a Rolling Contact Pair		
	Instant Center of a General Cam-Pair Contact		
	Centrodes		
	The Kennedy-Aronhold Theorem		
	Circle Diagram as a Strategy for Finding Instant Centers		
	Using Instant Centers to Find Velocities		
	Finding Instant Center Using Geometric Constraint		
	Programming		

File:KINE-2100 Kinematics and Dynamics.docx

3/6

6	Computational Analysis of Linkages:	Ch7[1]	
	Position, Velocity and Acceleration Representations		
	Analytical Closure Equations for Four-Bar Linkages		
	• Analytical Equations for a Rigid Body After the Kinematic		
	Properties of Two Points are Known		
	Analytical Equations for Slider-Crank Mechanisms		
	Other Four-Bar Mechanism with Revolute and Prismatic		
	Joints		
	Closure or Loop Equation Approach for Compound		
	Mechanism		
	 Closure Equation for Mechanism with Higher Pairs 		
	Notational Differences		
7	Special Mechanisms:	Ch8[1]	
	Special Planar Mechanisms		
	Spherical Mechanisms		
	Constant-Velocity Couplings		
	 Automotive Steering and Suspension Mechanisms 		
	Indexing Mechanisms		
8	Computational Analysis of Spatial Linkages:	Ch9[1]	
	Spatial Mechanisms		
	Robotic Mechanisms		
	 Direct Position Kinematics of Serial Chains 		
	Inverse Position Kinematics		
	Rate Kinematics		
	Closed-Loop Linkages		
	Lower-Pair Joints		
	Motion Platforms		
9	Profile Cam Design:	Ch10[1]	
	Cam-Follower Systems		
	 Synthesis of Motion Programs 		
	 Analysis of Different Types of Follower-Displacement 		
	Functions		
	Determining the Cam Profile		
10	Spur Gears:	Ch11[1]	
	Spur Gears		
	Condition for Constant-Velocity Ratio		
	Involutes		
	 Gear Terminology and Standards 		
	Contact Ratio		
	Involutometry		
	Internal Gears		
	Gear Manufacturing		
	 Interference and Undercutting 		

File:KINE-2100 Kinematics and DyIIdIIIICS.CIOCX This document is designed for on-line viewing. Printed copies, although permitted, are deemed UNCONTROLLED.

	 Nonstandard Gearing Cartesian Coordinates of an Involute Tooth Generated with a Rack 		
11	Helical, Bevel, and Worm Gears; Gear Trains	Ch12,13[1]	
	 Helical Gears Worm Gears Involute Bevel Gears General Gear Trains Direction of Rotation Simple Gear Trains Compound Gear Trains Planetary Gera Trains Harmonic Drive Speed Reducers 		
12	 Static and Dynamic Force Analysis of Mechanisms: Forces, Moments, and Couples Static Equilibrium Free-Body Diagrams Solution of Static Equilibrium Problem Transmission Angle in a Four-Bar Linkage Friction Considerations In-Plane and Out-of-Plane Forces Systems Conservation of Energy and Power Virtual Work Gear Loads Problem Solvable Using Particle Kinetics Dynamic Equilibrium of Systems of Rigid Bodies Flywheels 	Ch14,15[1]	
13	 Static and Dynamic Balancing; Integration of Computer Controlled Actuators: Single-Plane (Static) Balancing Multi-Plane (Dynamic) Balancing Balancing Reciprocating Masses Expression for Inertial Forces Balancing Multi-Cylinder Machines Static Balancing of Mechanisms Reactionless Mechanisms Computer Control of the Linkage Motion The Basics of Feedback Control Actuator Selection and Types Hands-On Machine-Design Laboratory 	Ch16,17[1]	
14	Rehearsal and Tutorial: Rehearsal of all subject and students can ask for more detail.		

15	Final Examination	

7. Book Reference:

- a) Main Text Book: [1] "Kinematics, Dynamics and Design of Machinery, 3rd Edition, 2016", Authors: Kenneth J. Waldron, Gary L. Kinzel, Sunil K. Agrawal, Publisher: Willey.
- b) Supplement Textbooks:

QT 06.02/Rev.00