

### SYLLABUS

| Date/ Revision | : 30 January 2017/0                  |
|----------------|--------------------------------------|
| Faculty        | : Life Sciences                      |
| Approval       | : Dean, The Faculty of Life Sciences |

#### SUBJECT : NANO TECHNOLOGY IN FOOD AND PHARMACEUTICALS

### 1. Identification of Subject:

| Name of Subject | : Nano Technology in Food and Pharmaceuticals |
|-----------------|-----------------------------------------------|
| Code of Subject | : FNAN-3500                                   |
| SKS             | : 2                                           |
| Semester        | : 5                                           |
| Study Program   | : Chemical Engineering                        |
| Lecturer        | : Tutun Nugraha, Ph.D                         |



#### 2. Competency

Nanotechnology is an enabling technology that has revolutionized many related disciplines such as food, pharmaceutical, cosmetics and nutraceuticals. Its increase in popularity was shown by increasing consumer demand for healthy food products and need for better drug delivery systems. This course will give general introductionans and some applications of nanotechnology to food, nutraceutical and pharmaceuticals sectors.

#### 3. Description of Subject:

This course provedes an introduction to the state of the art in nanotechnology with an emphasis on the diverse applications in food and nutrition sciences, medicine, and related fields. It describes the currently available methods, and contains numerous references to the primary literature, making this the perfect initial field guide for the students who wish to further study or utilize nanotechnology in their research or future career. Safety issues regarding these new technologies are also given.

## 4. Learning Approach

| Approach     | : Expository, inquiry, collaborative                         |
|--------------|--------------------------------------------------------------|
| Method       | : Lecture presentation, Focus group discussion, team work    |
| Student Task | : Appraisal, group presentation about biomaterial innovation |
| Media        | : Power Point presentation, print out of journals            |

File: Nano Technology in Food and Pharmaceuticals Syllabus

DAAD



1/4 PO Box 150, BSD CPA 15330 Tel. +62 21 50588000 +62 852 12318000 info@iuli.ac.id; www.iuli.ac.id QT 06.02/Rev.03 IULI – Eco Campus, The Breeze Jl. BSD Grand Boulevard BSD City 15345 Island of Java



## 5. Evaluation

- a) Absence maximum
- b) Discussion and semester appraisal
- c) Final Examination (Project + Final test)

#### Total

: 100 points

: 40 points

: 60 points

: 25%

# 6. Contents/ Topics of Lecturing:

| Week      | Topics                                                                    | Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Remark                                       |
|-----------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| 1<br>2, 3 | Nutrient absorption in human<br>Interfacial Science and<br>Nanotechnology | <ul> <li>Introduction</li> <li>Nutrients absorption in<br/>gastrointestinal tract</li> <li>Cellular fate of delivery systems<br/>and entrapped bioactives</li> <li>Interfacial science and the<br/>creation of nanoparticles</li> </ul>                                                                                                                                                                                                                                                                                                                                                            | Chapter 1, 2, 3<br>1 x 2 x 50 minutes        |
|           |                                                                           | <ul> <li>Synthesis of nano particles in<br/>the lab and industries</li> <li>Controlling properties of micro<br/>] to nanosized dispersions using<br/>emulsification devices</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                             | Chapter 4<br>2 x 2 x 50 minutes              |
| 4         | Nano Delivery System for<br>food and Pharmaceuticals                      | <ul> <li>Delivery systems for food<br/>applications: an overview of<br/>preparation methods and<br/>encapsulation, release, and<br/>dispersion properties</li> <li>Characterization of nanoscale<br/>delivery systems</li> <li>Impact of delivery systems on<br/>the chemical stability of<br/>bioactive lipids</li> <li>Encapsulation strategies to<br/>stabilize a natural folate, L-5-<br/>methyltetrahydrofolic acid, for<br/>food fortification practices</li> <li>The application of<br/>nanoencapsulation to enhance<br/>the bioavailability and<br/>distribution of polyphenols</li> </ul> | Chapter 6, 7, 8, 9, 10<br>1 x 2 x 50 minutes |
| 5         | Nano emulsion                                                             | <ul> <li>Review Emulsion properties</li> <li>Properties and applications of<br/>multilayer and nanoscale<br/>emulsions</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Chapter 11<br>1 x 2 x 50 minutes             |
| 6         | Liposome in nano technology                                               | Liposome as efficient system<br>for intracellular delivery of<br>bioactive molecules                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Chapter 12<br>1 x 2 x 50 minutes             |

File: Nano Technology in Food and Pharmaceuticals Syllabus



**INDONESIA** 7 Nano technology for lipid Relevance of nano technology • Chapter 13 for lipid Solid lipid nanoparticles and • 1 x 2 x 50 minutes applications Midterm Break 8 9 Applications for Protein-• Protein-polysaccharide polysaccharide complexes for effective delivery Chapter 14 of bioactive functional food ingredients 1 x 2 x 50 minutes 10 Nano technology for • Self assembly of amylose, hydrophobic active Chapter 15 protein, and lipid as a compounds nanoparticle carrier of 1 x 2 x 50 minutes hydrophobic small molecules 11 Polymers in nano technology • Polymeric nanoparticles for Chapter 9 food applications Types and characteristics of • 1 x 2 x 50 minutes polymers used 12 Safety and consumer Risks and ethics in the context • perceptions of food nanotechnology and the delivery of bioactive Chapter 19, 20, 21 ingredients 1 x 2 x 50 minutes Consumer perceptions of • nanomaterials in functional foods, and pharmaceuticals Safety assessment of nano ] and microscale delivery vehicles for bioactive ingredients 13 Characterization of nano SEM (Scanning Electron • particles 1 Microscopy) (supplement) Chapter 6 1 x 2 x 50 minutes 14 Characterization of nano **TEM** (Transmission Electron • particles 2 Microscopy) (supplement) Chapter 7 1 x 2 x 50 minutes (Suplement) 15 Characterization of nano **Dynamic Light Scattering** • Chapter 8 particles 3 1 x 2 x 50 minutes 16, 17 **Final Exam** 

INTERNATIONAI UNIVERSITY LIAISON

# 7. Book Reference:

1. Cristina Sabliov (Editor), Hongda Chen (Editor), Rickey Yada (Editor), "Nanotechnology and Functional Foods: Effective Delivery of Bioactive Ingredients, WileyBlackwell





Supplemental:

2. Graciela Wild Padua, PhD, Qin Wang, PhD, "Nanotechnology Research Methods for Food and Bioproducts", Wiley-Blackwell

File: Nano Technology in Food and Pharmaceuticals Syllabus



