

SYLLABUS

Date/ Revision 21 March 2017 / Rev. 01

Faculty Engineering

Approval Dean of Engineering Faculty

SUBJECT: Mechatronics System Design 1

1. Identification of Subject:

Name of Subject : Mechatronics System Design 1

Code of Subject : MESD-3001

SKS : 3 Semester : 5 Study Program : MTE

Lecturer : to be announced.

2. Competency

After taking this course, students are expected to be able to:

- Apply product design techniques to the development of mechatronic systems
- Explain the role of sensors, actuators, control, and machine intelligence in product performance
- Describe the basic structure of a microcontroller and discuss how to integrate the programmable device in a smart product
- Demonstrate the programming skills needed to write, modify and implement in Arduino microcontroller
- Analyze and evaluate the operational characteristics of electromechanical actuators (solenoids,
- Design, construct a simple mechatronic product

3. Description of Subject:

The Mechatronic System Design 1 course provides the student to integrate mechanical, electronic, and computer technologies in order to create "optimal" products and processes. Basic concepts and fundamental principles will be reviewed in this course. Students will develop the knowledge and skills necessary to adopt an interdisciplinary approach to mechatronic system design through the lectures, hands-on laboratory experiments and term project. Specific topics include:

- An Introduction to Mechatronic System Design: Intelligent products and processes; systems engineering; components of a mechatronic system; engineering design process; development of design specifications.
- Microcontrollers: Microcontroller and interfacing into analog and digital inputs/outputs, converting mechanical designs; programming the ARDUINO microcontroller;
- Sensors and Actuators: analog- and digital-signal conditioning; electrical and optical sensors; selection of sensors; electromechanical actuators; servo motors;

4. Learning Approach

Approach : Combination of Expository - inquiry and colaborative Method : Discussion, question answer, sample problem, group work

Student Task : Project work, presentation

Media : LCD projector, film.

5. Evaluation

a) Absence maximum < 25% b) Participation in discussion : 5 points c) Project Report : 15 Points d) Presentation, Simulation : 10 points e) Daily Quiz : 10 points f) Final Examination : 60 points

> Total : 100 points

6. Contents/Topics of Lecturing:

Week	Content/ Topics of Lecturing	Text Book Chapter	Remark
1	 Introduction What is mechatronics? From mechanical to mechatronics system Several defintion of mechatronics Mechatronics design components Mechatronics system design approach 	PART I	
2	Sensor and Signal Conditioning Systems Why signal conditioning? Wheatstone bridge Interfacing Signal conditioning process Op-Amp: Inverting -and noninverting-, summing- amplifier, integrating and differential amplifier passive and active filter	PART II	
3	 Arduino Microcontroller Programming a Arduino microcontroller using Arduino IDE Interfacing the Arduino-microcontroller into digital I/O Interfacing the Arduino-microcontroller into analog I/O, including the signal conditioning interfacing the Arduino with DC-Motor, and Servo Motor interfacing the Arduino with LCD Display Case Study 	Part IV	Quiz-1
4	Modeling of Mechatronics Systems • Structure of dynamic models • Mathematical models	PART V	Quiz-2

	 Review of mechanical and electrical actuation systems Review if pneumatic and hydraulic actuation systems Block diagram representation 		
	Systems transfer function		
	Control architecture in mechatronics systems		
5	Modeling of Mechanical Systems	PART V	Quiz-3
	Motion of mechanical elements	171111	Quiz 3
	Conversion translational and rotational motions		
	Mechanical building blocks		
	Building up mechanical systems		
6	Modeling of Electromechanical Systems		
	DC motor system	PART III	
	Mathematical model of DC motor system	PART V	
	Servomotor		
	Block diagram of servomotor		
	DC generator		
	Block diagram of DC generator		
7	Frequency Response		
,	Understanding of frequency response	PART V	
	Frequency response of first order systems		
	Frequency response of second order systems		
	Bode plots, Building up Bode plots		
	Characteristics of second order systems in frequency domain		
	How to describe the specifications		
	Understanding about stability, Gain and phase margin		
	Design of mechanical system in frequency domain		
8	MIDTERM SEMESTER BREAK		
9	Preparation of Mechatronics System Design - Project		
10-14	Mechatronics System Design - Project		
15	Presentation of MSD Project		
16	FINAL EXAMINATION		
	•		

7. Book Reference:

Textbooks:

- Bolton W.," Mechatronics: Electronic Control Systems in Mechanical and Electrical Engineering -6th Edition", Pearson Education - International Edition, 2015, ISBN: 978129207668-3
- Alciatore, D.G. and Histand, M.B., "Introduction to Mechatronics and Measurements Systems", McGraw-Hill, 2003
- R. Isermann, "Mechatronische Systeme Grundlagen", Springer-Verlag, Berlin, 1999

[Subject to Change / MaS /Rev.01]

