

SYLLABUS

Date/ Revision	2 August 2016
Faculty	Engineering
Approval	Dean of Engineering Faculty

SUBJECT : CALCULUS AND LINEAR ALGEBRA 2

1. Identification of Subject:

Name of Subject	:Calculus and Linear Algebra 2
Code of Subject	:MATH-1120
SKS / ECTS	:3 / 5
Semester	:2
Study Program	:B-AVE, B-EE, B-MTE, B-MEE, B-INE
Lecturer	:Jusak Kosasih, PhD

2. Competency

After having the course, students are expected to be able to:

- Solve systems of linear equations using multiple methods, including Gaussian elimination and matrix inversion.
- Carry out matrix operations, including inverses and determinants.
- Demonstrate understanding of the concepts of vector space and subspace.
- Demonstrate understanding of linear independence, span, and basis.
- Determine eigenvalues and eigenvectors and solve eigenvalue problems.
- Apply principles of matrix algebra to linear transformations.
- Demonstrate understanding of inner products and associated norms.
- Demonstrate understanding of multivariable functions and calculus.
- Demonstrate understanding of basic vector calculus operations.
- Solve second-order differential equation with constant coefficients.

3. Description of Subject:

The course is designed to challenge students to further develop and extend their mathematical modeling and critical thinking skills by applying strategies and concepts from linear algebra and multivariable calculus to engineering and science problems.

4. Learning Approach

: Combination of Expository - inquiry and colaborative
: Discussion, question answer, sample problem, group work
: Home work, assignments
: LCD projector

File: MATH-1120 Calculus and Linear Algebra 2

5. Evaluation

a)	Absence maximum	: 25%
b)	Participation in discussion	: 5 points
c)	Homework, Classwork	: 5 points
d)	Special Assignment	: 10 points
e)	Weekly Quiz	: 20 points
f)	Final Examination	: 60 points

Total : 100 points

6. Contents/ Topics of Lecturing:

Week	Content/ Topics of Lecturing	Text Book Chapter	Remark
1-2	 Systems of Linear Equations and Matrices: Introduction to Systems of Linear Equations Gaussian Elimination Matrices and Matrix Operations Inverses: Algebraic Properties of Matrices Diagonal, Triangular, and Symmetric Matrices Applications of Linear Systems 	1: Ch 1	Quiz
3	 Determinants: Determinants by Cofactor Expansion Evaluating Determinants by Row Reduction Properties of Determinants; Cramer's Rule 	1: Ch 2	
4	 Euclidean Vector Spaces: Vectors in 2-Space, 3-Space, and n-Space Norm, Dot Product, and Distance in Rⁿ Orthogonality The Geometry of Linear Systems Cross Product 	1: Ch 3 2: Ch 10	Quiz Homework
5-7	General Vector Spaces: Real Vector Spaces Subspaces Linear Independence Coordinates and Basis Dimension Change of Basis Row Space, Column Space, and Null Space Rank, Nullity, and the Fundamental Matrix Spaces Matrix Transformations from R ⁿ to R ^m Properties of Matrix Transformations Geometry of Matrix Operators on R ² Dynamical Systems and Markov Chains	1: Ch 4	Quiz
8	MIDTERM SEMESTER BREAK		1

File: MATH-1120 Calculus and Linear Algebra 2

枀

		LIAISON	
9-10	Eigenvalues and Eigenvectors: Eigenvalues and Eigenvectors Diagonalization Complex Vector Spaces Differential Equations 	1: Ch 5	Quiz Homework
11	 Inner Product Spaces: Inner Products Angle and Orthogonality in Inner Product Spaces Gram-Schmidt Process; QR-Decomposition Best Approximation; Least Squares Least Squares Fitting to Data Function Approximation; Fourier Series 	1: Ch 6 2: Sec 8.9	Quiz
12-13	 Functions of Several Variables and Partial Differentiation: Functions of Several Variables Partial Derivatives Tangent Planes The Gradient and Directional Derivatives Vector Fields, Curl, and Divergences Extrema of Functions of Several Variables Constrained Optimization and Lagrange Multipliers 	2: Ch 12 2: Sec 14.5	Quiz Homework
14	 Diagonalization & Quadratic Forms: Orthogonal Matrices Orthogonal Diagonalization Quadratic Forms Optimization Using Quadratic Forms Hermitian, Unitary, and Normal Matrices 	1: Ch 7	Quiz
15	 Second-Order Differential Equations: Second-Order Differential Equation with Constant Coefficients Nonhomogeneous Equations: Undetermined Coefficients Applications of Second-Order Equations 	2: Ch 15	
16	Final Examination		

7. Book Reference:

a) Main Text Book:

- 1. "Elementary Linear Algebra," 11th edition, **Author**: Howard Anton and Chris Rorres, Publisher: John Wiley & Sons; ISBN: 978-1-118-67745-2.
- 2. "Calculus: Early Transcendental Functions", Author: Robert T. Smith Roland Minton, Publisher: McGraw Hill - Higher Education; ISBN: 0 07353232 0.
- b) Supplement Text Book:

of Education

- 3. "Advanced Engineering Mathematics, 10th_Edition", Author: Erwin Kreyzig, Publisher: John Wiley, ISBN: 978-0-470-45836-5
- 4. "Fundamental of Electric Circuits", Author: Matthew Sadiku and Charles Alexander, Publisher: McGraw-Hill, ISBN:978-0-07-352955-4

File: MATH-1120 Calculus and Linear Algebra 2

DAAD

Federal Ministry Coordinator tr and Research TECHNISCHE UNIVERSITÄT ILMENAU INTERNATIONAL UNIVERSITY