

SYLLABUS

Date/ Revision	27 January 2017
Faculty	Life Sciences
Approval	Dean of The Faculty of Life Sciences

SUBJECT : EMBEDDED SYSTEM DESIGN

1. Identification of Subject:

Name of Subject	: Embedded System Design
Code of Subject	: EBSY-2900
SKS / ECTS	: 3/ 4
Semester	: 4
Study Program	: Biomedical Engineering
Lecturer	: Handri Santoso, Ph.D
JETAY I AND	The second se

2. Competency

After having the course, students are expected to:

- a) Understand the what is an embedded system.
- b) Understand the fundamental concepts of embbed systems.
- c) Present the learning objectives, focus on problem solving, clearly illustrated examples of specification and modelling embedded system.
- d) Understand about embedded system hardware and system software
- e) Develop students' ability to make an application and solve problems using embedded system.
- f) Give students hands on experience with programming, electronic device and integrated hardware and software in one embedded system

3. Description of Subject:

This course covers hardware as well as software aspects of embedded systems. The course focuses on the fundamental bases of software and hardware. Specific products and tools are mentioned only if they have outstanding characteristics. This course goes beyond teaching embedded system design by programming micro-controllers. With this approach, we would like to make sure that the material taught will not be outdated too soon. The concepts covered in this course should be relevant for several years to come. A key goal of this course is to provide an overview of embedded system design and to relate the most important topics in embedded system design to each other. The course should also help to bridge the gap

File: Embbeded System Design Syllabus

1/4

between practical experiences with programming micro-controllers and more theoretical issues. Furthermore, it should help to motivate students to look at more details.

4. Learning Approach

Approach	: Combination of Expository - inquiry and colaborative, hand on programming
Method	: Discussion, question answer, sample problem, group work
Student Task	: Home work, presentation
Media	: LCD projector, film.

5. Evaluation

a)	Absence maximum	: 25%
b)	Homework, Classwork, Quiz	: 40 points
c)	Final Examination	: 60 points

Total : 100 points

6. Contents/ Topics of Lecturing:

	Application areas, examples, education		
1 Introduction	 concept Common characteristics Challenges in embedded system design Design flows 	Ch 1	Homework
2 - 3 Specification and Modelling	 Requirment, models of computation The observer pattern, a case against imperative specification Early design phases: text, use cases, time- distance charts, sequence charts Communicating finite state machines (CFSMs): Timed automata State charts: implicit shared memory communication, modelling of hierarchy State charts timers and semantics, synchronous languages SDL: A case of message passing Dataflow: scope, Kahn process networks (KPN) Dataflow: synchronous (or "static") data flow, SDF, Simulink, RTW Petri nets: Introduction Petri nets: condition/event nets Petri nets: place transition nets, evaluation 	Ch 2	Homework

			DN NESIA	
		 Discrete Event Modelling, VHDL Discrete Event Modelling, IEEE 1164 Imperative (or von Neumann) model of computation, Comparison of models comparison of models of computation 		
4	Embbeded Systems hardware	 Sensors discretization of time: sample-and-hold circuits discretization of values: A/D-converters discretization: quantization noise, aliasing Processing, code-size efficiency Run-time efficiency, DSP, Multimedia processors, SIMD Very long instruction word (VLIW) machines, microcontrollers, Multiprocessor systems on a chip (MPSoCs), Reconfigurable logic, Field programmable gate arrays (FPGAs) Memories Communication Output: D/A-Converter Sampling theorem, actuators, secure hardware 	Ch 3	Homework
5	System Software	 Embedded operating systems, real-time operating systems Virtual machines Resource access protocols (Priority inversion and inheritance) Resource access protocols (Priority ceiling, stack resource policy) ERIKA, hardware abstraction layers, middleware, real-time data bases 	Ch 4	Homework Quiz
6	Programming Fundamental	 What is a program? Assembly language Compilers Cross Developments 		
7	Student Presentations	 Presenting the assessment based on chosen topic. Each student must present in 30 minutes their topic taken from the Textbook or Internet in front of their class mate. 		
8		MIDTERM SEMESTER BREAK		
9 - 10	Evaluation and validation	 Scope, multi-objective optimization, relevant objectives performance evaluation (early estimation & worst case execution time analysis), prerequisite: integer linear programming Real Time calculus Energy and power models, thermal models Risk- and dependability analysis Simulation, rapid prototyping and emulation, formal verification (briefly) 	Ch 5	Homework

3/4 PO Box 150, BSD CPA 15330 Tel. +62 21 50588000 +62 852 12318000 info@iuli.ac.id; www.iuli.ac.id

INTERNATIONAL UNIVERSITY

QT 06.02/Rev.03 IULI – Eco Campus, The Breeze Jl. BSD Grand Boulevard BSD City 15345 Island of Java

		INDO	NESIA	
11 - 12	Application mapping	 problem definition, classification of scheduling systems Aperiodic scheduling without precedence constraints Aperiodic scheduling with precedence constraints Periodic scheduling with precendence constraints, sporadic events Hardware/Software Partitioning Mapping of Applications to Multi-Processor Systems 	Ch 6	Homework Quiz
13	Optimizations	 task concurrency management, floating-point, high- level loop transformations SPM, allocation strategies optimizations for caches, offset assignment problem additional compiler optimizations, dynamic voltage scaling 	Ch 7	Homework
14	Test	 test pattern generation test pattern application response observation result comparison 	Ch 8	Homework & Quiz
15	Review	Wrap up the whole semester course / Review the semester		
16 -17	FINAL EXAMINATION	N		

INTERNATIONAL UNIVERSITY LIAISON

7. Book Reference:

- a) Main Text Book: "Embbeded System Design Embbeded Systems Foundation of Cyber-Physics Systems", Second Edition, Author: Dr. Peter Marwedelr, Publisher Springer, ISBN: 978-94-007-0256-1.
- b) Supplement Textbook:
 - "First Steps with Embedded Systems", By: Vyte Craft Limited,
 - *"Introduction to Embedded Systems Cyber Physcial Systems Approach"*, First Edition, Author: **E.A. Lee and S.A. Seshia. LeeSeshia.org, 2011**, ISBN 978-0-557-70857-4

PO Box 150, BSD CPA 15330 Tel. +62 21 50588000 +62 852 12318000

info@iuli.ac.id; www.iuli.ac.id

4/4