

SYLLABUS

Date/ Revision	29 March 2017/ Rev.01
Faculty	Engineering
Approval	Dean of Engineering Faculty

SUBJECT : ELECTRIC MACHINES AND ELECTRIC DRIVES

1. Identification of Subject:

Name of Subject	: Electric Machine and Electric Drives
Code of Subject	: ELEC-3500
SKS	: 2
Semester	:6
Study Program	: MTE
Lecturer	: To be announced

2. Competency

After studying the Introduction to Electrical Engineering course, the student able to:

- Describe the engineering profession and engineering ethics, including professional practice and licensure.
- Explain the engineering analysis and design processes
- Analyze data collected during laboratory exercises designed to expose
- Explain basic physical quantities in the electrical engineering, such as electric charge, electric current, electrical potential, electrical power, and energy;
- Explain the basic laws used in the electrical engineering and their relationship in the circuit analysis;
- describe the voltage to current relationship and current to voltage relationship in the resistors, capacitors, and inductors;
- describe the basic components used in the electrical engineering and their properties;
- Apply computer mathematical and simulation programs to solve circuit problems.

3. Description of Subject:

The purpose of the course is to teach principles of DC and AC motors and generators, and AC transformers and how they work. Basic concepts of electromagnetic circuits as they relate to voltages, currents, and physical forces induced in conductors are covered, including application to practical problems of machine design. Practical analytical models for most types of motors, generators, and transformers commonly used in industry are developed, and the models are used to analyze power requirements, power capability, efficiency, operating characteristics, control requirements, and electrical demands of these machines.

This course is also a "writing-intensive" course that teaches students to prepare formal, written technical documents. This goal is accomplished through extensive writing exercises performed in the context of laboratory exercises that accompany the course.

QT 06.02/Rev.03

4. Learning Approach

Approach	: Combination of Expository - inquiry and colaborative
Method	: Discussion, question answer, sample problem, group work
Student Task	: Home work, presentation
Media	: LCD projector, Teaching Aids (components), Simulation SW, film.

5. Evaluation

- a) Absence maximum : 25%
- b) Participation in discussion : 5 points
- c) Homework, Classwork : 5 points
- d) Presentation, Simulation : 10 points
- e) Daily Quiz : 20 points
- f) Final Examination : 60 points

Total : 100 points

6. Contents/ Topics of Lecturing:

Week	Content/ Topics of Lecturing	Text Book Chapter	Remark
1	Magnetic Circuits and Magnetic Materials		
1	Introduction to Magnetic Circuits	CH-01	
	Flux Linkage, Inductance, and Energy		
	Properties of Magnetic Materials		
	AC Excitation		
	Permanent Magnets		
	Application of Permanent Magnet Materials		
2-3	Transformers		
	Introduction to Transformers	CH-02	Quiz-1
	No-Load Conditions		
	Effect of Secondary Current; Ideal Transformer		
	Transformer Reactances and Equivalent Circuits		
	Engineering Aspects of Transformer Analysis		
	 Autotransformers; Multiwinding Transformers 		
	Transformers in Three-Phase Circuits		
	Voltage and Current Transformers		
	The Per-Unit System		
1-5	Electromechanical-Energy-Conversion Principles		
4-5	Forces and Torques in Magnetic	CH-03	
	• Field Systems		
	Energy Balance		
	Energy in Singly-Excited Magnetic Field Systems		
	Determination of Magnetic Force and Torque from Energy		
	Determination of Magnetic Force and Torque from Coenergy		
	Multiply-Excited Magnetic Field Systems		Quiz-2
	 Forces and Torques in Systems with Permanent Magnets 		

File: ELEC-3500 Electric Machines and Electric Drives, Rev.01

2/4

File: ELEC-3500 Electric Machines and Electric Drives, Rev.01

緣

INTERNATIONAL UNIVERSITY

	Current Waveforms for Torque Production		
	Nonlinear Analysis		
	Stepping Motors		
11	Single-and Two-Phase Motors		
14	Single-Phase Induction Motors: Qualitative Examination		
	 Starting and Running Performance of Single-Phase Induction and Synchronous motors 	CH-09	
	Revolving-Field Theory of Single-Phase Induction Motors		
	Two-Phase Induction Motors		
1 Г	Speed and Torque Control		
15	Control of DC Motors		
	Control of Synchronous Motors	CH-11	
	Control of Induction Motors		
	Control of Variable-Reluctance Motors		
16	Final Exam		

7. Book Reference:

• Main Text Book:

"Electric Machinery. 6th ed", Authors: Fitzgerald, A. E., Charles Kingsley, Jr., and Stephen D. Umans, **Publisher**: McGraw-Hill, 2007, **ISBN**: 9780071230100

• Supplement / Textbook / Manual

"Fundamental of Electric Circuit-6Ed,", Authors: Christopher K. Alexander and Matthew N.O. Sadiku, **Publisher**: McGraw-Hill, 2007, **ISBN**: 978-1-259-25132-0

"Principle and Applications of Electrical Engineering, 6Ed", Authors: Giorgio Rizzoni, **Publisher**: McGraw-Hill, 2016, **ISBN**: 978-981-4577-41-0

[Subject to change / MaS / Rev.01]

4/4