

SYLLABUS

Date/ Revision	August 15 th 2016
Faculty	Life Sciences
Approval	Dean of Faculty of Life Sciences

SUBJECT : PHYSICAL CHEMISTRY

1. Identification of Subject:

Name of Subject	: Physical Chemistry
Code of Subject	: PHCH-2300
SKS / ECTS	: 3/
Semester	: 111
Study Program	: Chemical Engineering and Food Technology
Lecturer	: Tutun Nugraha, BASc, MASc, Ph.D.
-	

2. Competency

After having the course, students are expected to:

- a) Understand the the underlying physical principles that govern the properties and behaviour of chemical systems.
- b) Use critical thinking and logic in the solution of problems
- c) knwo the applications of calculus into various problems that are faced in this course. The uses of Calculus ie. integral and differenctial are inseparable. This will provide the opportunities for the students to begin to link various concepts in basic mathematics into the realm of physics and chemistry. Integration of basic knowledge beins in this course.
- d) students will be introduced to new concepts and to some were given the chances to study in depth various phenomena in thermodynamics, chemical equilibrium as well as kinetics in the gas phase and in theliquid phase.

3. Description of Subject:

This course provides more insight into chemistry following the basic chemistry courses that the students have learned in the previous year. The course focuses on the topics of thermodynamics and kinetics, the concept of ideal gas, and the 0th, 1st, 2nd, and 3rd law of thermodynamics. Students will also learn to utilize tables of enthalpy, entropy, as well as Cp and Gibbs energy. On the kinetics side, the students will learn the basic concept of kinetics in both gas phase and liquid phase starting with the more theoretical material and continued with the derivation of rate equation from elementary reactions that forms the mechanisms of reaction. The students would also get the opportunity to use their mathematical skills particularly in the use of Calculus which is used substantially throughout the course. 1/5

File:CHE 3 0916 Physical Chemistry Syllabus

4. Learning Approach

Approach	: Lecture, Problem based learning
Method	: Discussion, question answer, sample problem/tutorials, group work
Student Task	: discussion in class, tutorial questions for students exercise
Media	: Power Point Presentation, Video, Instrument (lab work will be given in
	separate course ie physical chemistry laboratory)

5. Evaluation

a)	Absence maximum	: 25%
b)	Daily quizes/assignment	: 40 points
c)	Final Examination	: 60 points
	Total	: 100 points

6. Contents/ Topics of Lecturing:

Week	Topics	Content	Remark
1	Introduction	To provide an overview to the students	Lecture
		concerning the course as well as the	Chapter 1
		general requirement and the marking	1 x 50 minutes
		scheme The course will cover two main	
		parts, i.e. thermodynamics and kinetics	
1,2	Zeroth law of	To introduce the properties of matter at	Lecture, Group
	thermodynamics and the	equilibrium (T, P, V, n, system boundary,	discusion,
	properties of gases	and degree of freedom)	tutorial for
		To discuss the 0th law of	exercise
		thermodynamics, and how it leads to	Chapter 1 & 2
		the ideal gas temperature scale to	(law of
		introduce the critical phenomena	thermodynamics)
			Chapter 8 on
		To introduce the concept of ideal gas	ideal and real
		and ideal gas mixture including the	gas)
		Dalton's law as applied to partial	2 x 50 minutes
		pressur Followed by the discussion of	and
		Equation of States for real gases,	3 x 50 minutes
		including van der Waals and Virial EoS	
		which will allow	
		students to evaluate relationships	
		between P, V, T, and n for real gases	
		Exercises/review of problem set	
3,4	First law of thermodynamics	To introduce processes that take a	Lecture, Group
		chemical system from one state to	discusion,
		another is described	tutorial for
		1st law of thermodynamics, also	exercise
		referred	Chapter 1 & 2
		to as law of conservation of energy, is	2 x 3 x 50
		discussed; which is followed by the	minutes

2/5 PO Box 150, BSD CPA 15330 Tel. +62 21 50588000 +62 85212318000 info@iuli.ac.id; www.iuli.ac.id QT 06.02/Rev.03 IULI – Eco Campus, The Breeze JI. BSD Grand Boulevard BSD City 15345 Island of Java

		introduction ofWork (W), Internal Energy (U) as well as Enthalpy (H). Heat capacities (Cv and Cp) are then discussed The concept of thermochemistry which deals with the production of heat during a chemical process is discussed Students are also learning how to use or read various table of thermodynamics data to extract needed physical constant Exercises/review of problem set	
5	2nd and 3rd law of thermodynamics	Students learned the concept of Entropy (S) and how it is related to the natural/spontaneous direction of a process or a chemical reaction The 2nd law is discussed as related to the determination whether a process will occur in the forward or the backward direction through evaluation of DS Calculation of entropy at any desired temperature relative to its entropy at zero Kelvin through integration of dq _{rev} /T is discussed To introduce to student, the 3rd law of thermodynamics Heat engine and its efficiency is introduced	Lecture, Group discusion, tutorial for exercise Chapter 3 3 x 50 minutes
6	Fundamental equations of thermodynamics	To introduce the Gibbs and Helmholtz Energy to determine spontaneity of a process To discuss the effects of T and P on Gibbs energy To introduce the concept of fugacity & activity as well as how they are related to the calculation Gibbs energy for real gases Exercises/review of problem set	Lecture, Group discusion, tutorial for exercise Chapter 4 & 5 3 x 50 minutes
7,8	Chemical Equilibrium	To introduce the concept of chemical equilibrium and derive mathematical equations that describe it To discuss the evaluation of equilibrium constant through the values of Gibbs energy The effects of the values of T, P, and the concentrations of the initial compositions as well as the presence of inert compounds are described Students will also learn the concept of	Lecture, Group discusion, tutorial for exercise Chapter 6 3 x 50 minutes

File:CHE 3 0916 Physical Chemistry Syllabus

		heterogeneous reactions where solid	
		phase are involved in the chemical	
0.10	Dhace equilibrium	reactions	Lesture Crown
9,10	Phase equilibrium	For the determine spontaneity of a	discusion
		process	tutorial for
		To discuss the effects of T and P on	exercise
		Gibbs energy	Chapter 12
		To introduce the concept of fugacity &	3 x 50 minutes
		activity as well as how they are related	
		to the calculation Gibbs energy for real	
		gases	
		Exercises/review of problem set	
11	Electrochemical Equilibrium	To introduce the concept of chemical	Lecture, Group
		equilibrium and derive mathematical	discusion,
		To discuss the evaluation of equilibrium	exercise
		constant through the values of Gibbs	Chapter 13
		energy	3 x 50 minutes
		The effects of the values of T, P, and	
		the concentrations of the initial	
		compositions as well as the presence of	
		inert compounds are described	
		Students will also learn the concept of	
		neterogeneous reactions where solid	
		reactions	
12,13	Reaction Kinetics in the gas	Introduction to kinetic theory of gases	Lecture, Group
	phase	Probability density for molecular speeds	discusion,
		of gas molecules	tutorial for
		Velocity distribution in one direction	exercise
		Maxwell distribution of speeds	Chapter 14 & 15
		Transport phenomena	z x 5 x 50 minutes
		Rate and order of reaction	minutes
		Reversible first order reactions	
		Consecutive first order reactions	
		Effects of temperature	
		Mechanisms of chemical reactions	
		rrelations between rate constants for	
		torward and backward reactions	
		trimolecular reactions Unbranched and	
		branched chain reactions	
14	Reaction Kinetics in the liquid	Viscosity of a liquid, diffusion	Lecture, Group
	phase	Mobility of an ion	discusion,
		Encounter pairs and solvent cage	tutorial for
		Diffusion controlled reactions in liquids	exercise
		Acid and Base catalysis	Chapter 16

File:CHE 3 0916 Physical Chemistry Syllabus

QT 06.02/Rev.03 IULI – Eco Campus, The Breeze Jl. BSD Grand Boulevard BSD City 15345 Island of Java

	Enzyme catalyses	3 x 50 minutes
	Exercises/review of problem set	
15,16	FINAL EXAMINATION	

7. Book Reference:

a) Physical Chemistry, Ira N Levine, McGraw Hill, 6th Edition, ISBN 978-007-127636-8, 2009 Estimated Price of book: Rp 305,000,-

Other readings:

b) R. J. Silbey, R. A. Alberty, M.G. Bawendi, Physical Chemistry, Edisi ke-4, John Wiley & Sons, Inc. 2005.

8. Non TextBook Reading:

File:CHE 3 0916 Physical Chemistry Syllabus

5/5 PO Box 150, BSD CPA 15330 Tel. +62 21 50588000 +62 85212318000 info@iuli.ac.id; www.iuli.ac.id QT 06.02/Rev.03 IULI – Eco Campus, The Breeze JI. BSD Grand Boulevard BSD City 15345 Island of Java