

SYLLABUS

Date/ Revision	March 26, 2017 / 1.0
Faculty	Engineering
Approval	Dean Faculty of Engineering

SUBJECT : ARTIFICIAL INTELLIGENCE (ARIN-3000)

1. Identification of Subject:

Name of Subject	: ARTIFICIAL INTELLIGENCE
Code of Subject	: ARIN-3000
SKS / ECTS	: 3
Semester	: 6
Study Program	: INE, MTE
Lecturer	: to be appointed

2. Competency

After having the course, students are expected to:

- a) understand the methods of constructing Artificial Intelligence
- b) understand how to use those methods, such as Knowledge-Based Systems, Expert Systems, Artificial Neural Network, Fuzzy Logic, and Genetic Algorithm
- c) knowing the applicative domain of those methods, and their combinations
- d) knowing how to build those application using programming language such as Java, or C++

3. Description of Subject:

Artificial Intelligence course discusses the history of Artificial Intelligence (AI), knowledge based systems and/or Expert systems, Neural Network, Fuzzy Logic, Genetic Algorithm methods to be implemented within industrial environment. This course introduces some software tools for explaining the methods.

4. Learning Approach

Approach	:	Combination of Expository - inquiry and colaborative
Method	:	Discussions, Questions/answers, Sample problems/cases, Group works
Student Task	:	Presentation, Application Development
Media	:	LCD projector

5. Evaluation

- a) Absence maximum : 25%
- *b*) Participation in discussion : 10 points
- *c*) Homework, Classwork : 10 points
- \vec{d}) Presentation, Simulation : 10 points
- e) Daily Quiz : 10 points
- *f*) Final Examination : 60 points

File: ARIN-3000-ARTIFICIAL_INTELLIGENCE.docx

Coordinator Chi TECHNISCHE UNIVERSITÄT ILMENAU PO Box 150, BSD CPA 15330 Tel. +62 21 50588000 +62 852 12318000 info@iuli.ac.id; www.iuli.ac.id

1/3

IULI – Eco Campus, The Breeze Jl. BSD Grand Boulevard BSD City 15345 Island of Java

QT 06.02/Rev.03

Total : 100 points

6. Contents/ Topics of Lecturing:

Week	Topics	Content	Remark
1	Introduction to knowledge-	Intellligent machines, the history of	Chapter 1
	based intelligent systems	artificial intelligence, or from the 'dark-	
		ages' to knowledge-based systems	
2	Rule-based expert systems	Introduction – what is knowledge? Rules as	Chapter 2
		a knowledge representation technique, the	
		main players in the expert system	
		development team, structure of a rule-	
		based expert system, fundamental	
		characteristics of an expert system,	
		forward chaining and backward chaining	
		interence techniques, conflict resolution,	
		advantages and disadvantages of rule-bsed	
2	Uncertainty management in	Definition of uncertantly basic probability	Chanter 2
5	rule based export systems	theory Payesian reasoning Payesian	Chapter 3
	Tule-based expert systems	accumption of ovidence. Pipe of the	
		Bayesian method, certainty factors theory	
		and evidential reasoning an application of	
		certainty factors, comparison of Bayesian	
		reasoning and certainty factors	
	Review on C++ programming		
4	Fuzzy Expert Systems	What is fuzzy thinking ? Fuzzy sets.	Chapter 4
		linguistic variables and hedges, operatoins	
		of fuzzy sets. fuzzy rules. fuzzy inference.	
		builing a fuzzy expert system	
4,5	Frame Based Expert System	What is a frame ? Frames as a knowledge	Chapter 5
		representation technique, inheritance in	
		frame-based systems, methods and	
		demons, interaction of grames and rules,	
		example of frame based expert system	
6	Project FL :	Starting to developed Fuzzy Logic using C++	group
		programming language	
7	Artificial Neural Network	How the brain works, the neuron as a	Chapter 6
		simple computing element, the	
		perceptron, multilayer neural neteworks,	
		accelerated learning in multilayer neural	
		networks, the Hopfield network,	
		bidirectional associative memory, self-	
0	Mid torm qualification		
ð		Starting to dougland simple application	
		starting to developed simple application	
	Evolutionany computation	Con evolution he intelligent 2 Simulation of	Chapter 7
9		Can evolution be intelligent i Simulation of	

File: ARIN-3000-ARTIFICIAL_INTELLIGENCE.docx

2/3 PO Box 150, BSD CPA 15330 Tel. +62 21 50588000 +62 852 12318000 info@iuli.ac.id; www.iuli.ac.id QT 06.02/Rev.03

IULI – Eco Campus, The Breeze Jl. BSD Grand Boulevard BSD City 15345 Island of Java

INDONESIA natural evolution, genetic algorithm, why genetic algorithms work, example, evolution strategies, genetic programming 10 Hybrid Intelligent Systems How to combine German mechanics with Chapter 8 Italian love, Neural Expert Systems, Neuro-Fuzzy systems, Adaptive Neuro-Fuzzy Inference System, Evolutionary Neural Networks, Fuzzy Evolutionary Systems 11 Knowledge Engineering What is knowledge engineering, will an Chapter 9 expert system work for my problem ? Will a fuzzy expert system work for my problem ? Will a neural network work for my problem ? Will genetic algorithms work for my problem ? Will hybrid intelligent system work for my problem ? 12 Data Mining and knowledge What is data mining ? Statistical methods Chapter 10 discovery and data visualization, Principle component analysis, Relational databases and database queries, The data warehouse and multidimensional data analysis, Decision trees, Association rules and market basket analysis 13, 14, **Project Presentation** 15 16, 17 **Final Examination**

INTERNATIONAL UNIVERSITY LIAISON

7. Book Reference:

a) Michael Negnevistky, Artificial Intelligence : a guide to intelligent systems, 3rd ed., Pearson, 2011, ISBN 978-1-408-22574-5

File: ARIN-3000-ARTIFICIAL_INTELLIGENCE.docx

3/3

PO Box 150, BSD CPA 15330 Tel. +62 21 50588000 +62 852 12318000 info@iuli.ac.id; www.iuli.ac.id QT 06.02/Rev.03

IULI – Eco Campus, The Breeze Jl. BSD Grand Boulevard BSD City 15345 Island of Java